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Abstract. We predict the charged lepton electric dipole moments in the split fermion scenario in the
framework of the two Higgs doublet model. We observe that the numerical value of the muon (tau) electric
dipole moment is of the order of the magnitude of 10−22 e cm (10−20 e cm) and there is an enhancement in
the case of two extra dimensions, especially for the tau lepton electric dipole moment.

1 Introduction

The existence of the electric dipole moments (EDMs)
of fermions depends on the CP -violating interactions.
The complex Cabibbo–Kobayashi–Maskawa (CKM) ma-
trix elements cause CP -violation in the standard model
(SM); however, the estimated fermion EDMs are negligi-
bly small, if the above complex phases are considered. This
stimulates one to investigate these physical quantities in
the framework of the new models beyond the SM, such as
multi-Higgs doublet models (MHDM), the supersymmet-
ric model (SUSY) [1], etc.

In the literature there exist experimental results on
the fermion EDMs: de = (1.8± 1.2± 1.0)× 10−27 e cm [2],
dµ = (3.7±3.4)×10−19 e cm [3] and dτ = (3.1)×10−16 e cm
[4], respectively, and on the neutron EDM dN < 1.1 ×
10−25 e cm [5].

Extensive theoretical work has been done on the EDMs
of fermions. The quark EDMs have been estimated in sev-
eral models [6] and the EDMs of nuclei, deutron, neu-
tron and some atoms have been studied extensively [7].
The lepton electric dipole moments have been predicted
in various studies [8–11]. In [8] the lepton electric dipole
moments have been analyzed in the framework of the see-
saw model. Reference [9] was devoted to the EDMs of the
leptons in the model III version of the 2HDM and de has
been predicted to be of the order of the magnitude of
10−32 e cm. The work [10] was related to the lepton EDM
moments in the framework of the SM with the inclusion
of non-commutative geometry. Furthermore, the effects of
non-universal extra dimensions on the electric dipole mo-
ments of fermions in the two Higgs doublet model have
been estimated in [11].

This work is devoted to the prediction of the lepton
EDMs in the two Higgs doublet model in which the flavor
changing (FC) neutral current vertices at the tree level are
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permitted and the CP -violating interactions are carried
by complex Yukawa couplings. Furthermore, we respect
the split fermion scenario where the hierarchy of fermion
masses is coming from the overlap of the fermion Gaussian
profiles in the extra dimensions. The split fermion scenario
has been studied in several works in the literature [12–19].
In [12] an alternative view of the fermion mass hierar-
chy has been introduced by assuming that the fermions
were located at different points in the extra dimensions
and this geometric interpretation resulted in exponentially
small overlaps of their wavefunctions. The separation of
fermions in the extra dimensions forbids the local cou-
plings between quarks and leptons and this can ensure a
solution also to the proton stability. Reference [13] was de-
voted to the locations of left and right handed components
of fermions in the extra dimensions and their roles in the
mechanism of the Yukawa hierarchies. The constraint on
the split fermions in the extra dimensions has been ob-
tained by considering leptonic W decays and the lepton
violating processes in [14]. The discussion of CP -violation
in the quark sector in the split fermion model was done
in [15]. Reference [16] was related to the new configura-
tion of split fermion positions in a single extra dimension
and the physics of kaon, neutron and B/D mesons to find
stringent bounds on the size of the compactification scale
1/R. The contributions due to the split fermion scenario
on the rare processes have been examined in [17] and the
shapes and overlaps of the fermion wave functions in the
split fermion model have been studied in [18].

In the present work, we consider the EDMs of charged
leptons by assuming that they have Gaussian profiles in
the extra dimensions. First, we study the EDMs of charged
leptons in a single extra dimension, using the estimated lo-
cation of them. Then, we assume that the number of extra
dimensions is two and the charged leptons are restricted
to the fifth extra dimension, with non-zero Gaussian pro-
files. As a final analysis, we predict the EDMs of charged
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leptons by taking non-zero Gaussian profiles in both extra
dimensions.

In the numerical calculations, we observe that the elec-
tron EDM de is at the order of 10−32 e cm, and this is too
small to study the additional effects due to the extra di-
mensions. The numerical value of dµ (dτ ) is at most of the
order of the magnitude of 10−22 (10−20) e cm in the case
that the leptons have non-zero Gaussian profiles in the
first extra dimension, for two extra dimensions, for large
values of the compactification scale 1/R and for interme-
diate values of Yukawa couplings.

This paper is organized as follows: In Sect. 2, we
present EDMs of charged leptons in the split fermion sce-
nario, in the two Higgs doublet model. Section 3 is devoted
to a discussion and our conclusions.

2 Electric dipole moments of charged leptons
in the split fermion scenario
in the two Higgs doublet model

The fermion EDM is carried by the CP -violating fermion–
fermion–photon effective interaction and, for quarks (for
charged leptons), the complex CKM matrix (possible lep-
ton mixing matrix) elements is the possible source of this
violation, in the framework of the SM. The estimated tiny
numerical values of EDMs of fermions in the SM stimu-
lates one to go beyond, and the model III version of the
2HDM is one of the candidates to get relatively large EDM
values, since the FC neutral currents (FCNC) are permit-
ted at tree level and the new Yukawa couplings can be
complex in general. Furthermore, the addition of the spa-
tial extra dimensions brings additional contributions sen-
sitive to the compactification scale 1/R where R is the
radius of the compactification. Here we take the effects of
extra dimensions into account and we follow the idea that
the hierarchy of lepton masses is coming from the lepton
Gaussian profiles in the extra dimensions.

The Yukawa Lagrangian responsible for the lepton
EDM in a single extra dimension, respecting the split
fermion scenario, reads

LY = ξE
5 ij

¯̂
liLφ2ÊjR + h.c., (1)

where L and R denote chiral projections L(R) = 1/2(1 ∓
γ5), and φ2 is the new scalar doublet. Here l̂iL (ÊjR),
with family indices i, j, are the zero mode1 lepton doublets
(singlets) with Gaussian profiles in the extra dimension y
and they read

l̂iL = N e−(y−yiL)2/2σ2
liL,

ÊjR = N e−(y−yjR)2/2σ2
EjR, (2)

with the normalization factor N = 1
π1/4 σ1/2 . liL (EjR)

are the lepton doublets (singlets) in four dimensions. The
parameter σ is the Gaussian width of the leptons with the

1 In our calculations, we take only zero mode lepton fields.
See Sect. 3 for further explanation.

property σ � R, yi(L,R) are the fixed position of ith left
(right) handed lepton in the fifth dimension. The positions
of left and right handed leptons are obtained by taking
the observed masses into account [13]. The idea is that
the lepton mass hierarchy is due to the relative positions
of the Gaussian peaks of the wave functions located in
the extra dimension [12,13]. By assuming that the lepton
mass matrix is diagonal, one possible set of locations for
the lepton fields reads (see [13] for details)

Pli =
√

2 σ


11.075

1.0
0.0


 , Pei =

√
2 σ


 5.9475

4.9475
−3.1498


 . (3)

Here we choose the Higgs doublets φ1 and φ2 to be

φ1 =
1√
2

[(
0

v + H0

)
+

(√
2χ+

iχ0

)]

φ2 =
1√
2

( √
2H+

H1 + iH2

)
, (4)

with the vacuum expectation values

〈φ1〉 =
1√
2

(
0
v

)
; 〈φ2〉 = 0, (5)

and we collect SM (new) particles in the first (second)
doublet. Notice that H1 and H2 are the mass eigenstates
h0 and A0, respectively, since no mixing occurs between
two CP -even neutral bosons H0 and h0 at tree level, in
our case.

The new Higgs field φ2, playing the main role in the
existence of the charged lepton EDM, is accessible to the
extra dimension and after the compactification on the orb-
ifold S1/Z2, it is expanded as

φ2(x, y) (6)

=
1√
2πR

{
φ

(0)
2 (x) +

√
2

∞∑
n=1

φ
(n)
2 (x) cos(ny/R)

}
,

where φ
(0)
2 (x) is the four dimensional Higgs doublet which

contains the charged Higgs boson H+, the neutral CP -
even (-odd) Higgs bosons h0 (A0), and φ

(n)
2 (x) are the KK

modes of φ2. The non-zero KK mode of the Higgs doublet
φ2 includes a charged Higgs of mass

√
m2

H± + m2
n, a neu-

tral CP -even Higgs of mass
√

m2
h0 + m2

n, and a neutral

CP -odd Higgs of mass
√

m2
A0 + m2

n where mn = n/R is
the mass of the nth level KK particle. Notice that the
gauge field KK modes do not bring new contributions to
the EDMs of charged leptons since they do not exist in
the one loop diagrams (see Fig. 1).

Now, we present the vertices existing in the diagrams,
after the integration over the fifth dimension. The integra-
tion of the combination ¯̂

fiL (R) S(n)(x) cos(ny/R) f̂jR (L),
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Fig. 1. One loop diagrams contribute to the EDMs of charged
leptons due to neutral Higgs bosons h0, A0 in the 2HDM, in-
cluding KK modes in a single extra dimension. Wavy lines
represent the electromagnetic field and dashed lines the Higgs
field where l1 (i) = e, µ, τ

(S = h0, A0), appearing in the part of the Lagrangian (see
(1)), over the fifth dimension reads∫ πR

−πR

dy
¯̂
fiL (R) S(n)(x) cos(ny/R) f̂jR (L)

= V n
LR (RL) ij f̄iL (R) S(n)(x) fjR (L), (7)

where the factor V n
LR (RL) ij is

V n
LR (RL) ij = e−n2 σ2/4 R2

e−(yiL (R)−yjR (L))
2/4σ2

× cos
[
n (yiL (R) + yjR (L))

2 R

]
. (8)

Here the fields fiL, fjR are the four dimensional lepton
fields. Therefore we can define the Yukawa couplings in
four dimensions as

ξE
ij

(
(ξE†

ij )†
)

= V 0
LR (RL) ij ξE

5 ij

(
(ξE

5 ij)
†) /

√
2πR, (9)

where ξE
5 ij are Yukawa couplings in five dimensions (see

(1))2.
In the case of two extra dimensions, after the compact-

ification on the orbifold (S1 ×S1)/Z2, the new Higgs field
φ2 can be expanded as

φ2(x, y, z) =
1

2πR

{
φ

(0,0)
2 (x) (10)

+ 2
∞∑
n,s

φ
(n,s)
2 (x) cos(ny/R + sz/R)

}
,

where φ
(n,s)
2 (x) are the KK modes of φ2. Notice that the

mass of KK modes of the charged (neutral CP -even, neu-
tral CP -odd) Higgs is√

m2
H± + m2

n + m2
s,(√

m2
h0 + m2

n + m2
s,
√

m2
A0 + m2

n + m2
s

)
,

2 In the following we use the dimensionful coupling ξ̄E
N with

the definition ξE
N,ij =

√
4 GF√

2
ξ̄E
N,ij , where N denotes the word

“neutral”.

where mn = n/R (ms = s/R) is the mass of the n(s)th
level KK particle. In the case that the leptons are re-
stricted to only the fifth dimension, the vertex factor
V n

LR (RL) ij is the same as the one in (8). On the other
hand, if we assume that the leptons are accessible to both
dimensions with Gaussian profiles as

l̂iL = N e−((y−yiL)2+(z−ziL)2)/2σ2
liL,

ÊjR = N e−((y−yjR)2+(z−zjR)2)/2σ2
EjR, (11)

with the normalization factor N = 1
π1/2 σ

, the integration

of the part of the Lagrangian ¯̂
fiL (R) S(n,s)(x) cos(ny/R+

sz/R) f̂jR (L) over the fifth and sixth extra dimensions re-
sults in the vertex factor

V
(n,s)
LR (RL) ij (12)

= e−(n2+s2) σ2/4 R2
e−((yiL (R)−yjR (L))

2+(ziL (R)−zjR (L))
2)/4σ2

× cos
[
n (yiL (R) + yjR (L)) + s (ziL (R) + zjR (L))

2 R

]
.

Similar to a single extra dimension case, we define the
Yukawa couplings in four dimension as

ξE
ij

(
(ξE

ij)
†) = V

(0,0)
LR (RL) ij ξE

6 ij

(
(ξE

6 ij)
†) /2πR, (13)

where V
(0,0)
LR (RL) ij =e−((yiL (R)−yjR (L))

2+(ziL (R)−zjR (L))
2)/4σ2

.
Here, we present the possible positions of left and right
handed leptons in the two extra dimensions by respecting
the observed masses3. Similar to the previous discussion,
we assume that the lepton mass matrix is diagonal and
one of the possible set of locations for the Gaussian peaks
of the lepton fields in the two extra dimensions reads

Pli =
√

2 σ


 (8.417, 8.417)

(1.0, 1.0)
(0.0, 0.0)


 ,

Pei =
√

2 σ


 (4.7913, 4.7913)

(3.7913, 3.7913)
(−2.2272, −2.2272)


 , (14)

where the numbers in the parentheses denote the y and
z coordinates of the location of the Gaussian peak in the
extra dimensions. Here we choose the same numbers for
the y and z locations of the Gaussian peaks.

Now, we would like to present the EDMs of charged
leptons with the addition of a single extra dimension where
the localized leptons have Gaussian profiles. The effective
EDM interaction for a charged lepton f is given by

LEDM = idf f̄ γ5 σµν f Fµν , (15)

where Fµν is the electromagnetic field tensor, “df” is the
EDM of the charged lepton and it is a real number by her-
miticity. With the assumption that there is no CKM type

3 The calculation is similar to the one presented in [13] which
is done for a single extra dimension.
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lepton mixing matrix and ignoring possible CP -violating
LFV interactions due to the lepton–lepton KK mode–
Higgs KK mode vertices, only the new neutral Higgs part
gives a contribution to their EDMs and f -lepton EDM
“df” (f = e, µ, τ) can be calculated as a sum of contri-
butions coming from neutral Higgs bosons h0 and A0,

df = − iGF√
2

e

32π2

Qτ

mτ
((ξ̄D ∗

N,lτ )2

− (ξ̄D
N,τl)

2) ((F1(yh0) − F1(yA0))

+ 2
∞∑

n=1

e−n2 σ2/2 R2
(16)

× cn(f, τ) c′
n(f, τ)

(
F1(yn

h0
) − F1(yn

A0
)
))

,

for f = e, µ and

dτ = − iGF√
2

e

32π2

×
{

Qτ

mτ

(
(ξ̄D ∗

N,ττ )2 − (ξ̄D
N,ττ )2

)
((F2(rh0) − F2(rA0))

+ 2
∞∑

n=1

e−n2σ2/2 R2
c2
n(τ, τ)

(
F2(rn

h0
) − F2(rn

A0
)
))

− Qµ
mµ

m2
τ

(
(ξ̄D ∗

N,µτ )2 − (ξ̄D
N,τµ)2

)
× ((rh0 ln(zh0) − rA0 ln(zA0))

+ 2
∞∑

n=1

e−n2σ2/2R2
(17)

× cn(µ, τ)c′
n(µ, τ)

(
rn
h0

ln(zn
h0

) − rn
A0

ln(zn
A0

)
))}

,

where

cn (f, τ) = cos
[
n (yfR + yτL)

2 R

]
,

c′
n (f, τ) = cos

[
n (yfL + yτR)

2 R

]
, (18)

for f = e, µ, τ and the functions F1(w), F2(w) read

F1(w) =
w (3 − 4 w + w2 + 2 ln w)

(−1 + w)3
, (19)

F2(w) = w ln w +
2 (−2 + w) w ln 1

2 (
√

w − √
w − 4)√

w (w − 4)
,

with yn
S = m2

τ

m2
S+n2/R2 , rn

S = 1
yn

S
and zn

S = m2
µ

m2
S+n2/R2 ,

yS = y0
S , rS = r0

S and zS = z0
S ; Qτ , Qµ are the charges of

τ and µ leptons respectively. In (16) we take into account
only the internal τ -lepton contribution respecting our as-
sumption that the Yukawa couplings ξ̄E

N,ij , i, j = e, µ, are
small compared to ξ̄E

N,τ i i = e, µ, τ due to the possible
proportionality of the Yukawa couplings to the masses of
leptons in the vertices. In (17) we present also the internal
µ-lepton contribution, which can be neglected numerically.
Notice that we make our calculations for an arbitrary pho-
ton four momentum square q2 and take q2 = 0 at the end.

Now, we present the EDMs of charged leptons with
the addition of two extra dimensions for the case that the
leptons are accessible to both extra dimensions:

df = − iGF√
2

e

32π2

× Qτ

mτ

(
(ξ̄D ∗

N,lτ )2 − (ξ̄D
N,τl)

2) ((F1(yh0) − F1(yA0))

+ 4
∞∑
n,s

e−(n2+s2) σ2/2 R2

×c2 (n,s)(f, τ) c′
2 (n,s)(f, τ)

×
(
F1(y

(n,s)
h0

) − F1(y
(n,s)
A0

)
))

, (20)

for f = e, µ and

dτ = − iGF√
2

e

32π2

×
{

Qτ

mτ

(
(ξ̄D ∗

N,ττ )2 − (ξ̄D
N,ττ )2

)
((F2(rh0) − F2(rA0))

+ 4
∞∑
n,s

e−(n2+s2)σ2/2R2

×(c2 (n,s))2(τ, τ)

×
(
F2(r(n, s)h0) − F2(r(n, s)A0)

))
− Qµ

mµ

m2
τ

(
(ξ̄D ∗

N,µτ )2 − (ξ̄D
N,τµ)2

)
× ((rh0 ln(zh0) − rA0 ln(zA0))

+ 4
∞∑
n,s

e−(n2+s2)σ2/2R2

×c2 (n,s)(µ, τ)c′
2 (n,s)(µ, τ) (21)

×
(
r
(n,s)
h0

ln(z(n,s)
h0

) − r
(n,s)
A0

ln(z(n,s)
A0

)
))}

,

where

c2 (n,s)(f, τ) = cos
[
n(yfR + yτL) + s(zfR + zτL)

2R

]
,

c′
2 (n,s)(f, τ) = cos

[
n(yfL + yτR) + s(zfL + zτR)

2R

]
,

(22)

for f = e, µ, τ . In (20) and (21), the parameters y
(n,s)
S ,

r
(n,s)
S and z

(n,s)
S are defined by y

(n,s)
S = m2

τ

m2
S+n2/R2+s2/R2 ,

r
(n,s)
S = 1

y
(n,s)
S

and z
(n,s)
S = m2

µ

m2
S+n2/R2+s2/R2 . In (20) and

(21) the summation would be done over n, s = 0, 1, 2, ...
except n = s = 0.

Finally, in our calculations, we choose the Yukawa cou-
plings complex and we used the parametrization

ξ̄E
N,τf = |ξ̄E

N,τf |eiθf . (23)

Therefore, the Yukawa factors in (16), (17), (20) and (21)
can be written as(

(ξ̄D ∗
N,fτ )2 − (ξ̄D

N,τf )2
)

= −2i sin 2θf |ξ̄D
N,τf |2, (24)
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where f = e, µ, τ . Here θf is the CP -violating parameter
which is the source of the lepton EDM.

3 Discussion

This work is devoted to the analysis of the effects of ex-
tra dimensions on the EDMs of fermions in the case that
the hierarchy of lepton masses is due to the lepton Gaus-
sian profiles in the extra dimensions. The CP -violating na-
ture of the EDM interactions needs CP -violating phases.
Here, for the complex phases, we consider the complex
Yukawa couplings appearing in the FCNC at tree level
in the framework of the 2HDM. Notice that we do not
take the internal lepton KK modes into account (see for
example [13] for the calculation of the KK modes of lep-
tons). The lepton–lepton KK mode-Higgs zero mode and
lepton–lepton KK mode–Higgs KK mode vertices carry
the possible LFV and CP -violating interactions. We ig-
nored these contributions because of the difficulty arising
during the summations. We expect that, for large values
of the compactification scale, their effects on the physical
parameters are suppressed.

The four dimensional leptonic complex couplings ξ̄E
N,ij ,

i, j = e, µ, τ are the free parameters of 2HDM. We con-
sider the Yukawa couplings ξ̄E

N,ij , i, j = e, µ, as smaller
than ξ̄E

N,τ i, i = e, µ, τ , and we assume that ξ̄E
N,ij is sym-

metric with respect to the indices i and j. In the case that
no extra dimension exists, the upper limit of ξ̄D

N,τµ is pre-
dicted to be 30 GeV (see [20] and references therein) by
using the experimental uncertainty, 10−9, in the measure-
ment of the muon anomalous magnetic moment [21] and
assuming that the new physics effects cannot exceed this
uncertainty. Using this upper limit and the experimental
upper bound of the Br of µ → eγ decay, Br ≤ 1.2×10−11,
the coupling ξ̄D

N,τe can be restricted in the range 10−3–
10−2 GeV [9]. In our calculations we choose the numeri-
cal values of the couplings ξ̄E

N,τµ (ξ̄E
N,τe) around 30 GeV

(10−2 GeV). For the coupling ξ̄E
N,ττ , we use the numeri-

cal values which are greater than ξ̄E
N,τµ, since we have no

explicit restriction region.
Here, we respect the split fermion scenario where the

hierarchy of lepton masses is due to the lepton Gaussian
profiles in the extra dimensions. The SM scalar H0 is a
constant profile in the extra dimensions and the mass
term, which is modulated by the mutual overlap of the
lepton wavefunctions, is obtained by integrating the oper-
ator H0 ¯̂

ff̄ over extra dimensions. This idea is the main
point to fix the position of left (right) handed lepton in
the extra dimensions (see [13] for details). Since the lep-
tons are located in the extra dimensions with Gaussian
profiles, the parameter ρ = σ/R, where σ is the Gaussian
width of the fermions, is the free parameter of the model.
The locations of lepton fields in the extra dimensions are
obtained in terms of the Gaussian width σ.

In the present work we take split leptons in a single and
two extra dimensions and use a possible set of locations
to calculate the strength of the lepton–lepton–new Higgs
scalars vertices, which play the main role in the calculation

ρ

10
2
3
×

d
µ

(e
−

cm
)

0.010.0010.0001

100

10

1

Fig. 2. dµ with respect to the parameter ρ for 1/R = 500 GeV,
mh0 = 100 GeV, mA0 = 200 GeV and the intermediate value
of sin θµ = 0.5. The lower–upper solid (dashed, small dashed)
line represents the dµ for a single–two extra dimensions, for
ξ̄E
N,τµ = 10 (30, 50) GeV

of the charged lepton EDM. First, we take a single extra
dimension and use the estimated location of the leptons
(see (3)) to calculate the corresponding vertices (see (7)).
After that, we assume that the number of extra dimen-
sions is two and take the leptons to be restricted to the
fifth extra dimension, with non-zero Gaussian profiles. In
this case the abundance of new scalar KK modes causes
the increase of the EDM of charged leptons, especially the
τ lepton EDM. However, the exponential suppression fac-
tor (see (8)) appearing in the summation of the KK modes
causes the sum not to have a large contribution. Finally,
we assume that the leptons have non-zero Gaussian pro-
files also in the sixth dimension and using a possible set of
locations in the fifth and sixth extra dimensions (see (14)),
we calculated the EDM of the charged leptons. In this case
the additional exponential factor appearing in the second
summation further suppresses the lepton EDM especially
for the muon case.

Now, we start to estimate the charged lepton EDMs
and to study the parameter ρ and the compactification
scale 1/R dependences of these measurable quantities.

In Fig. 2, we plot EDM dµ with respect to the pa-
rameter ρ for 1/R = 500 GeV, mh0 = 100 GeV, mA0 =
200 GeV and the intermediate value of sin θµ = 0.5. Here
the lower–upper solid (dashed, small dashed) line rep-
resents the EDM for a single–two extra dimensions, for
ξ̄E
N,τµ = 10 (30, 50) GeV. The EDM is slightly larger for

the case that the leptons have non-zero Gaussian profiles
in the first extra dimension, compared to the one where
the leptons have non-zero Gaussian profiles in both ex-
tra dimensions. It is observed that dµ is weakly sensitive
to the parameter ρ in the given interval, for the chosen
value of the compactification scale 1/R. In the two ex-
tra dimensions the numerical value of dµ is larger com-
pared to the one single extra dimension since there is a
crowd of KK modes. However, the suppression exponen-
tial factor appearing in the summations causes the contri-
butions not to increase extremely. The numerical value of
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Fig. 3. dµ with respect to the scale 1/R, for ρ = 0.01,
mh0 = 100 GeV, mA0 = 200 GeV and the intermediate value of
sin θµ = 0.5. Here the lower–upper solid (dashed, small dashed)
line represents the dµ for a single–two extra dimensions, for
ξ̄E
N,τµ = 10 (30, 50) GeV

dµ is of the order of the magnitude of 5.0 × 10−22 e cm for
ξ̄E
N,τµ = 30 GeV, in the case that the leptons have non-zero

Gaussian profiles in the first extra dimension.
Figure 3 is devoted to the EDM dµ with respect to the

compactification scale 1/R, for ρ = 0.01, mh0 = 100 GeV,
mA0 = 200 GeV and the intermediate value of sin θµ =
0.5. Here the lower–upper solid (dashed, small dashed)
line represents the EDM for a single–two extra dimen-
sions, where the leptons have non-zero Gaussian profiles
in the first extra dimension, for ξ̄E

N,τµ = 10 (30, 50) GeV.
This figure shows that dµ is weakly sensitive to the com-
pactification scale 1/R, especially for 1/R > 500 GeV.

In Fig. 4, we present the EDM dτ with respect to
the parameter ρ for 1/R = 500 GeV, mh0 = 100 GeV,
mA0 = 200 GeV and the intermediate value of sin θτ = 0.5.
Here the lower–upper solid (dashed, small dashed) line
represents the EDM for a single–two extra dimensions,
where the leptons have non-zero Gaussian profiles in the
first extra dimension, for ξ̄E

N,ττ = 50 (80, 100) GeV. For
the case where the leptons have non-zero Gaussian profiles
in both extra dimensions, the numerical value of dτ is al-
most the same as the one where the leptons have non-zero
Gaussian profiles in only one extra dimension, for the two
extra dimensions scenario. It is shown that dτ is weakly
sensitive to the parameter ρ in the given interval. Due to
the crowd of KK modes, in the two extra dimensions, the
numerical value of dτ is almost five times larger compared
to the one in the single extra dimension. The numerical
value of dτ is of the order of the magnitude of 10−20 e cm
for ξ̄E

N,ττ = 80 GeV, in the two extra dimensions.
Figure 5 represents the compactification scale 1/R de-

pendence of the EDM dτ , for ρ = 0.01, mh0 = 100 GeV,
mA0 = 200 GeV and the intermediate value of sin θτ = 0.5.
Here the lower–upper solid (dashed, small dashed) line
represents the EDM for a single–two extra dimensions,
where the leptons have non-zero Gaussian profiles in the
first extra dimension, for ξ̄E

N,ττ = 50 (80, 100) GeV. For
the case where the leptons have non-zero Gaussian pro-
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Fig. 4. dτ with respect to the parameter ρ for 1/R = 500 GeV,
mh0 = 100 GeV, mA0 = 200 GeV and the intermediate value of
sin θτ = 0.5. Here the lower–upper solid (dashed, small dashed)
line represents the EDM for a single–two extra dimensions,
where the leptons have non-zero Gaussian profiles in the first
extra dimension, for ξ̄E

N,ττ = 50 (80, 100) GeV

files in both extra dimensions the numerical values of dτ

is almost the same as the one where the leptons have non-
zero Gaussian profiles in only one extra dimension. Similar
to the µ EDM case dτ is weakly sensitive to the compact-
ification scale 1/R, especially for 1/R > 500 GeV.

Now we would like to summarize our results.
(1) dµ is weakly sensitive to the parameter ρ for ρ < 0.01
and the compactification scale 1/R > 500 GeV. Due to the
abundance of KK modes, in the two extra dimensions the
numerical value of dµ is slightly larger compared to the one
in the single extra dimension. The numerical value of dµ is
at most of the order of the magnitude of 5.0 × 10−22 e cm
for ξ̄E

N,τµ = 30 GeV, in the case that the leptons have non-
zero Gaussian profiles in the first extra dimension.
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Fig. 5. dτ with respect to the scale 1/R, for ρ = 0.01,
mh0 = 100 GeV, mA0 = 200 GeV and the intermediate value of
sin θτ = 0.5. Here the lower–upper solid (dashed, small dashed)
line represents the EDM for a single–two extra dimensions,
where the leptons have non-zero Gaussian profiles in the first
extra dimension, for ξ̄E

N,ττ = 50 (80, 100) GeV
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(2) dτ is weakly sensitive to the parameter ρ for ρ < 0.01
and the compactification scale 1/R > 500 GeV. The crowd
of KK modes in the two extra dimensions bring addi-
tional contributions which enhance dτ almost five times
compared to the one in a single extra dimension. The nu-
merical value of dτ is of the order of the magnitude of
10−20 e cm for ξ̄E

N,ττ = 80 GeV, in the two extra dimen-
sions.
(3) The addition of the effects of the internal lepton KK
modes brings an extra dependence of the physical param-
eters to the scale 1/R; however, for the large values of the
parameter 1/R, hopefully, these contributions do not af-
fect the scale 1/R dependence of the physical parameters.

With the help of the forthcoming most accurate exper-
imental measurements, valuable information can be ob-
tained about the existence of extra dimensions and the
possibilities of Gaussian profiles of the leptons.
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